Investigating the interface of superhydrophobic surfaces in contact with water.
نویسندگان
چکیده
Neutron reflectivity (NR) is used to probe the solid, liquid, vapor interface of a porous superhydrophobic (SH) surface submerged in water. A low-temperature, low-pressure technique was used to prepare a rough, highly porous organosilica aerogel-like film. UV/ozone treatments were used to control the surface coverage of hydrophobic organic ligands on the silica framework, allowing the contact angle with water to be continuously varied over the range of 160 degrees (superhydrophobic) to <10 degrees (hydrophilic). NR shows that the superhydrophobic nature of the surface prevents infiltration of water into the porous film. Atomic force microscopy and density functional theory simulations are used in combination to interpret the NR results and help establish the location, width, and nature of the SH film-water interface.
منابع مشابه
بررسی اثر پلیاتیلن گلایکول بر رفتار ترشوندگی سطوح آبگریز ZnO تهیه شده بهروش رسوبدهی حمام شیمیایی
A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ra...
متن کاملHierarchical roughness optimization for biomimetic superhydrophobic surfaces.
Superhydrophobic surfaces should have high contact angles (CA) with water and low contact angle hysteresis (CAH). High CA may be achieved by increasing surface roughness, while in order to have low CAH, superhydrophobic surfaces should be able to form a stable composite interface with air pockets between solid and liquid. Capillary waves, nanodroplets condensation, hydrophilic spots due to chem...
متن کاملAir–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy
Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect) are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag red...
متن کاملMultiscale roughness and stability of superhydrophobic biomimetic interfaces.
The stability of a composite interface of roughness-induced superhydrophobic surfaces is studied. To have high contact angle and low contact angle hysteresis, superhydrophobic surfaces should be able to form a composite interface with air pockets in the valleys between asperities (pillars). However, the composite interface may be unstable and can be irreversibly transformed into a homogeneous i...
متن کاملDrop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 21 17 شماره
صفحات -
تاریخ انتشار 2005